x86/ldt: Rework locking
The LDT is duplicated on fork() and on exec(), which is wrong as exec()
should start from a clean state, i.e. without LDT. To fix this the LDT
duplication code will be moved into arch_dup_mmap() which is only called
for fork().
This introduces a locking problem. arch_dup_mmap() holds mmap_sem of the
parent process, but the LDT duplication code needs to acquire
mm->context.lock to access the LDT data safely, which is the reverse lock
order of write_ldt() where mmap_sem nests into context.lock.
Solve this by introducing a new rw semaphore which serializes the
read/write_ldt() syscall operations and use context.lock to protect the
actual installment of the LDT descriptor.
So context.lock stabilizes mm->context.ldt and can nest inside of the new
semaphore or mmap_sem.
Signed-off-by: Peter Zijlstra (Intel) <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>
Cc: Andy Lutomirski <[email protected]>
Cc: Andy Lutomirsky <[email protected]>
Cc: Boris Ostrovsky <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Borislav Petkov <[email protected]>
Cc: Brian Gerst <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: Dave Hansen <[email protected]>
Cc: David Laight <[email protected]>
Cc: Denys Vlasenko <[email protected]>
Cc: Eduardo Valentin <[email protected]>
Cc: Greg KH <[email protected]>
Cc: H. Peter Anvin <[email protected]>
Cc: Josh Poimboeuf <[email protected]>
Cc: Juergen Gross <[email protected]>
Cc: Linus Torvalds <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Will Deacon <[email protected]>
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Cc: [email protected]
Signed-off-by: Ingo Molnar <[email protected]>